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In this paper we prove several inequalities for polynomials and trigonometric
polynomials. They are all obtained as applications of certain quadrature formulae,
some of which are proved here for the first time. Such an application of a Gaussian
quadrature formula was pointed out by Bojanov in 1986 (see East. J. Approx. 1
(1995), 37-46; J. Approx. Theory 83 (1995), 175-181). Coincidentally, in the same
year, it was shown how an inequality for entire functions of exponential type
belonging to L*(R) could be deduced from a Gaussian quadrature formula for the
doubly infinite integral jof% f(x)dx. © 1997 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

For any real A> —1/2 let w, be the ultraspherical weight function
wi(x) = (1 =x?)*"12 —l<x<l1 (1)

and denote by 7, the space of all functions f such that ', w,(x) | f(x)|* dx
exists. With the weight w, we associate the scalar product

(b= [ ) §x) i) di, (2)
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256 GUESSAB AND RAHMAN

which is defined on %,. There exists a sequence of polynomials called
ultraspherical or Gegenbauer polynomials which are orthogonal with
respect to the scalar product (¢, /),. As in [2], we shall use for these poly-
nomials the (unusual) notation and normalization

T(A+1/2) I 27
(A+1/2) I'(n +24) POy (A> —1/2, A #0),

Cilx) = T2 Tn+i+1/2)" "

n

where P(># is the Jacobi polynomial of degree n with P*/(1)=
I'ln+a+1)/I(n+1) I(a+1). The definition is usually extended to the
case 4 =0, putting C2(x):=lim, _, o(C}(x)/A).

Amongst the important special cases of Gegenbauer polynomials are the
nth Chebyshev polynomial of the first kind,

T,(x):=3 C(x)

and the nth Chebyshev polynomial of the second kind, U,(x) := C}(x). We
also need to introduce the polynomials

0,(x):=(x*=1) U, o(x),  R,(x):=(x*—1)T, 5(x).

We recall the well known fact that

CHx)=2AC "N x)  (A> —1/2, 2 #0),

a4
dx "
d

T Clx) =2C) (),

and that the polynomial C? has n simple zeros which all lie in (—1, 1). We
denote them by x,,(4),..x, ,(4) arranged in increasing order. The
derivative (d/dx) C; has n—1 simple zeros in (—1, 1), which, in view of
(3), must be x,_; (A+1),..,x,_, ,_1(A+1). Let us denote by Z, the set
of all polynomials of degree at most n whose coefficients may be nonreal,
and by 2/ the class of all polynomials in 2, satisfying

|p(X) < |Cji(x) (4)

at the zeros of (x* — 1)(d/dx) C}(x).
It was proved by Markoff [ 12] that if p belongs to #, and satisfies

Ip(x)| <1 for —1<x<1,
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then for ke N

max | p“(x)| < T(1). (5)

—1l<x<1

The following remarkable extension of this result was obtained by Duffin
and Schaeffer (see [9, Theorem I1] or [22, pp. 130-138]):

THEOREM A. The conclusion (5) holds if p belongs to %, and

p <COSZZ>‘<‘T,, <cosv:>=1, v=0,1,.,n (6)

In addition, they showed that if £ is any closed subset of [ —1, 1] which
does not contain all of the points cos(vz/n), then there is a polynomial
p e, bounded by 1 on E for which (5) is not satisfied.

In 1970, Turan asked the following question:

Problem. Let pe%,. How large can

max_|p“(x)|

—l<x<l1
be if the graph of p on [ —1, 1] lies in the closed unit disk, i.e., if
lp(x)| < /1—x for —1<x<1? (7)

The answer to this question turned out to be:

TueoreMm B [ 18, 17]. Let pe P, n=2. If (7) is satified, then for all
keN we have

max | p“(x)| < O(1). (8)

—l<x<l1

This result was subsequently extended as follows:

THEOREM C [20]. If pe P, and even if (7) is satisfied only at the zeros
of (1 —z*)T,_(2), then (8) holds for k = 2. The same cannot be said if k = 1
but that

max | p'(x)| <= (140(1)) nlogn,

—1<x<1

Q|

which is (essentially) best possible.

In [17] it was shown that if x* is any given point of [ —1, 1], then amongst
all polynomials p in 2, satisfying (7) on [ —1, 1], the quantity |p"*(x*)| is
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maximized by Q, if x* belongs to n—k + 1 well defined disjoint subinter-
vals of [ —1, 1] but is not in the complementary subintervals of [ —1, 1].
As such it is not clear that in the class of polynomials under consideration
the quantity f L w(x) | p(k)(x)|* dx would be maximized by Q, unless w

vanishes p.p. in the complementary intervals. For this reason we find the
following results of Varma (see [ 27, 28, or 14]) quite interesting.

THEOREM D. If pe 2, and (7) holds for —1 <x<1, then
j ST=x2 [pP(x)? dx<j JT=210W(x)Pdx (k=2.3). (9)

Furthermore,

PO d< | QPP dx  (k=1). (10)

1 1 1
J 1 /1= -1 /1—x?
THeOrReM E. Let p e 2P, such that

Ip(x)| <1 —x2 (—1<x<l). (11)

Then, we have

f./ 2 [p®(x |dx<j JTI—XRWO)2dx (k=2,3). (12)

Earlier, in analogy with Theorem C, it was proved by Rahman and Watt
[21] that if pe Z,, n=3, and

|p(x)| <1 —x? at the points cos(vr/(n—2)), v=0,1,..,n—2, (13)
then for k>3,

max_|p®(x)| < R(1). (14)

—1l<x<l1

Here, we prove

THEOREM 1. Let pe?,. Even if (7) holds only at the zeros of
(1=2)T,_,(2), we have

1 1
[ = Par< [ (1-x) P10 Pdy (k>2).
1

- —1
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Theorem 1 says, in particular, that in the case k=3 inequality (9)
remains true even if (7) holds only at the zeros of (1 —z?) T,,_,(z). Besides,
under this weaker assumption, inequality (10) holds for k=2 as well.

THEOREM 2. Let pe?P,, n=3, such that (13) holds. Then

1 1
[ =y i Par< [ (1= R REOP Ay, (k23).
1 —1

Theorem 2 says, in particular, that (12) holds for k=4 as well and even
if (11) holds only at the zeros of (1 —2z?) T, _,(z).
We also prove

THEOREM 3. Let Ae(—1/2,1/2]. If pe 2}, then

1
J 1 (1 _x2)/1+k—5/2 |p(k)(x)|2 dx

2

<J-1 (1_x2)1+k75/2 ik dx (k>2)
~ ) dxk ) = .

Co(x)

This result was proved by Varma [ 27, Theorem 2] for A=0, k=2 under
the stronger restriction that max_, ..o, |p(x)| < 1.

Remark 1. From a result of Bojanov [ 6, Theorem 1 and Remark 27 it
follows that if 1 and p are as in Theorem 3, then

1
j 1 (1 _x2)/1+k73/2 |p(k)(x)|2 dx

2

dk
CHx)| dx, (k=1).

1
<J (1_x2)/1+k73/2
N | dxk n

Next, we prove some inequalities for trigonometric polynomials and
mention a few corollaries.

THEOREM 4. If's is a trigonometric polynomial of degree at most n, such
that

<1 for v=0,1,..2n—1 and s'(0)=0,




260 GUESSAB AND RAHMAN

then

1= |s'(0)
— | = do<n® 15
27{J_ﬂ1—cos6 " (15)

with equality if and only if s(0)=e” cos nf, yeR.

CoORrROLLARY 1. If p is a polynomial of degree at most n, such that
|p(x)| <1 at the zeros of (1 —x?) T(x), then

1 1
[ el dr <, (16)

-1 1 — X
with equality if and only if p(x)=e"T,(x), yeR.

THEOREM 5. If s is a trigonometric polynomial of degree a most n, such

that
VI
s<> <1 for v=0,1,.,2n—1 and s'(0)=s(n)=0,
n
then
L= I5'(0)° 3
N LI D S < , 1
27:J_,Tl—coszt9d(9 " (17)
with equality if and only if s(0) =e” cos nf, yeR.
COROLLARY 2. Under the hypothesis of Corollary 1, we have
1 1
[ ———= @<, (18)
1

Wi
with equality if and only if p(x)=e"T, (x), yeR.
Remark 2. Corollary 2 is the case =0, k=1 of Bojanov’s inequality

in Remrark 1.

The next inequality is not new but its proof is. Our proof might seem
unduly long but its interest lies in the fact that it is based on a simple quad-
rature formula.

THEOREM 6. If s is a trigonometric polynomial of degree at most n, then

sinh(2n+ 1)y 1

2g
IO < sinh 7 2r

[P m=mizon.  (19)
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In (19), equality holds at a point &+ in, if and only if

_sin(n+3)(E— &g + i) ,
§E) = sin 3({ —&o+1in9) cec

2. LEMMAS

First we mention three known inequalities and then prove two new ones.
After that we present certain positive quadrature formulae as auxiliary
results. Only the last formula is really known explicitly.

2.1. The Inequalities

The following lemma is a result of Duffin and Schaeffer [9].

LemMa 2.1.  Let g be a polynomial of degree n whose zeros t,, ..., T,, are
all real and distinct. Further, for k =2, let 7* =", ., t% 1) | denote the =eros
of g%~V If fis a polynomial of degree at most n such that

() <Ig'(z )l for v=1,..n,
then for k =2 we have
|fOEED)<g® ) for v=1,.,n—k+1.

The following two lemmas are taken from [20, 21].

LEmMa 2.2 [20, Lemma 5]. Let pe, such that (7) is satisfied at the
zeros of (1 —2z%) T, _(z). Then at the zeros of Q, we have

1) if x=+1

pl<igei= (" TR

If equality is attained at one of the zeros, then it is attained at all of them
and p(x)=yQ,(x) with |y| =1.

LemMA 2.3 [21, Lemma 13]. Let p(x):=(1—x?) ¢(x) be a polynomial
of degree at most n such that |q(x)|<1 at A,=cos(vr/(n—2)) (v=0,
1,..,n—2). Then, at the critical points of R, we have

|p" (%) < [R(x)]. (21)

If equality is attained at one of the zeros, then it is attained at all of them
and p(x) =yR,(x) with |y| = 1.



262 GUESSAB AND RAHMAN

We need to estimate |p’(x,,(4)| for p e P;. This is done in

LEMMA 24. Let Ze(—1/2,1/2]). If pe P, then at the zeros of C we
have

d
Pl<| g ci) (22)

Equality holds only if p(x)=yCX(x) where |y| =1.
Proof. Let Ae(—1/2,1/2] be given and consider

d

) = (1 =5%) 1 €)= TT (v, 1)

By Lagrange interpolation with nodes
xn—l,o(/1+1):_1a Xy — 11(/14‘1) o Xy — ]n(/1+1):
we obain

= 3 Pt D) W(x)
PO = e, Gt 1) x—x, A+ 1)

for any pe #,, and therefore for 1 <u <n,

“ p(xnfl,v(j'—i_l))
VZO ,(xnfl,v(i + 1))

oo X)) =X 1 (A4 D) Y3, ,(2)) =P, ,(4))
(X, () =X, 1 (A+1))?

P'(x,,(2) =

Since (see [26])

2

(1—x> )j—c (x)— (2)+1)xd%€Cj(x)+n(n+2i) CHx)=0

we have

CHx)— 2xiC,f(x)

d?
V() = (1) 7 e

d2

4 CHx)—n(n+27L) CXx), (23)

=(24—1
(24 )xdx
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and so if C/(x)=0 then

(x =X, 1, (A+ D) ¥'(x) —¥(x)

=—1- — 2
(djdx) CA(x) = —1—(22=1) xx,_ (A + 1) +24x7.

(24)
Consequently, at the zero of C/, we have
p'(x) Z p(x, 1, (A+1))
(dfdx) Ci(x) 2y W¥'(x,_1(A+1))
l+(2/1—1)xxn (A4 1)=20x7 (25)

(x xn 1, \(} + 1))
In particular (taking p(x)= C(x)),

< 1+Q2A=1)x, 1 (A+1)x, (4)—2A(x, [(A)
_vgo_ o (xn,,u()“)_xnfl,v(/l'i_l))z

where

R C:{(X”_l)‘,(i + l))
e l//,(xnfl,v(i + 1)) )

A

From (23), we have

lp’(xn—lﬂv(i-i_l))
_(=n(n+224) Clx, 1, (A+1) if 1<v<n—1
Cl=2x, (A D)(dJdx) Col o sery 0 visOorn

Ifv=0then x,_, ,(A+1)= —land (d/dx) C;|,_ 1) Calx,_1,(A+1))
are of opposite signs, from which it readly follows that Jm.o 1s negative. It
is similarly seen that 4, ,<0. That 4, ,<0 for 1 <v<n—1 is completely
obvious from the above expression for y'(x, _; (A4 1)). Next we observe
that if Ae(—1/2,1/2], then

+ (2)"_ 1) X l,v(l + 1) xn,,u(l) - 2/1()(?"’#(1))2
=1 =[x, (A7 + (22— D)(|x, ()] = |x, (A)])
=(1 =[x, (A1 +22]x,, ,(A)])

> (1= Ix, ()

>0.
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Hence

Corlx, 1 (2 + 1))‘
W(x,1,(4))

™ 1 + (2/1 - l) Xy — l,v(/1 + 1) xn,,u(i) - 2;“(xn,,u(/1))2

(xn,,u()") —Xu_ l,v(/:L + 1))2

and now, at the zeros of C7, (4) and (25) give us

17| "
NSz

Chx, 1,(A+1)) ‘
|(d/dx) Ci(x)| ~,Z,

lp,(xn—lﬂv(l))
QA= D x, (G ) X200
(x—x, 1, (A+ 1))

=1.

The case of equality is easily discussed.

LEMMA 2.5. Let Ae(—1/2,1/2]. If pe P} such that p(z) is real for
real z, then for all z outside the open unit disk, we have

[p(2)l < s (k=0). (26)

Equality holds only if p(x)=yC}(x) where y = +1. Inequality (26) holds for
all ze R\(—1, 1) even if we drop the restriction that p(z) e R for zeR.

Proof. Let

n Z—xn71 ‘(i‘i_l)
1(z) = y
V(Z) 1_[ xnil",(/ﬂh‘i‘ 1) _xnfl,/l(;b_‘_ 1)

u=0,u#v

be the vth fundamental function of Lagrange interpolation with respect to
the nodes

xn—l,()(/l—'— l) = 715 xn—l,l(/"t‘_’_ l)a eeey xn—l,n()“+ 1) = 1
We may write

B " z—X, 1 (A+1)
l = _1 n—v n—1,u
== e =, LG

n=0,pu#*v
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and so

(—1/5(2) _ 2= ulit D)
—DfL(z) M r— x4 1)

where ¢; ; is a positive constant. At any point z outside the unit disk the
diameter [ —1, 1] subtends an angle less than /2. So any two of the
complex numbers (—1)"/,(z) seen as vectors in the complex plane make an
angle less than /2. Since

i (1444 1)) 1(2)

(=D"plx, -1 (A+ 1) (=1)"1,(2)

v=0

is a sum of real multiples of the vectors (—1)"/,(z) which all lie in a sector
of opening less than 7/2, the modulus of p(z), i.e., the magnitude of the
(vector) sum, will be largest when the quantities (—1)"p(x, _; (A4 1)) are
all positive (or all negative) and as large in magnitude as possible. This
means that p should coincide with C? at each of the points x,, _; o(4 + 1), ...,
X,_ 1.4+ 1), or else it should coincide with — C; at each of these points.
So we have proved that, for each p e 27, we have

lp(I<IChz)if |zl > 1

By continuity |p(z)| < |CXz)| for |z| >1. Now note that C/(z)#0 for
|z > 1 and so for |a| > 1 the polynomial p(z) —aC}(z) has all its zeros in
|z| < 1. By the Gauss—Lucas theorem, so does p*(z) — a(d*/dz*) C}(z) for
k=1,..,n—1. In other words, p*)(z) —a(d®/dz*) C}(z) #0 for |z| =1
and k=1, .., n This is possible only if |p*)(z)|<|(d*/dz") C/(z)| for
Izl =1, k=1, ..,n

Now, let us assume that pe 2%, ie(—1/2,1/2], but that p(z) is not
necessarily real for all real values of z. We will show that (26) still holds
for all ze R\(—1, 1) and all k>0. Suppose, if possible, that |p"(&)| >
|(d*/dz") C}(2)|._. for some e R\(—1,1) dnd some k>0. Let p¥(&) =
P e If p(z2) :=37_ a,z/ then py(z) := o Re(e7a;) z/ satisfies all
the conditions that p does and in addition p,(z )e [R forze R Hence by the
first part of the lemma

<|pPUE) = Re(e "p™ (&N = p (&),

which is a contradiction.
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Remark 3. The idea of the above proof comes from a paper by Bernstein
[4]. It was rediscovered by Erdés [10].

Remark 4. The case k=n of (26) says that if p(z)=>"_,a,z’ and
Ci(z)=%1_ob,z" then |a,| <|b,].

2.2. The Quadrature Formulae

We consider quadrature formulae S,, and their respective remainder
terms E,, . of algebraic degree of precision (ADP) 2m —r—1. Thus, for
each functions f integrable on (—1, 1),

S.0)= L 0.f(z) 1)
where
1<t < <t,<1,  o,cR,
and
Ef1=] w0 /() d=5,(/),
with

=0, for v=0,.,2m—r—1,

28
# 0, for v=2m—r. (28)

E, (x") {

Such a quadrature formula is called a positive (2m —r— 1, m, w) quadra-
ture formula if all its weights @, are nonnegative; for example, the classical
Gaussian quadrature is the unique positive (2m—1, m, w) quadrature.
Furthermore, we say that a polynomial ¢, €%, generates a positive
(2m—r—1,m, w) quadrature formula if it has m zeros 7, < --- <7, in
[ —1,1] and the interpolatory quadrature formula based on the nodes 7,,,
u=1, .., m,is positive. Since the degree of exactness is 2m —r — 1, it is easy
to see that the underlying polynomial ¢g,, , must be orthogonal to 2,,_,_,
with respect to the weight function w. Then, apart from a multiplicative
constant, ¢, , must be of the form

qm,r(x)zcjln_i_plclj;fl—i_ +prci,7,~, (29)
where p;, .., p, are real constants. Such a polynomial is called a quasi-

orthogonal polynomial of degree m and order r.
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For the historical development and a number of practical computations
we refer the reader to [1, 3, and 26]. Positive (2m —r—1, m, w) quad-
rature formulae have been characterized completely by Peherstorfer [ 15,
16]. For an earlier paper on the subject see [ 13]. Recently, Xu [30] has
obtained a simpler characterization of positive quadrature formulae for
r=1,2,3 (also see [23] for a different characterization). The case r=2 is
particularly important for us.

We mention a simple sufficient condition under which a (2m — 3, m, w)
quadrature formula has only positive weights in the case when p; =0 and
p, depends on m.

LEMMA 2.6. Let {F,,} be a family of quasi-orthogonal polynomials of the
form

Fm(x) = Cr/;z(x) +pm,2C}';;:172(x)

with p,, »<0. If for all p belonging to %, _5 we have

m

[ pdv= X wa(x),

— u=1

where x, ..., x,, are the zeros of F,,, which all lie in (—1, 1), then the weights
w, must be all positive.

This lemma is contained in a theorem of Xu [29]. The way he states his
result, it might seem that p,, , must be independant of m but an examina-
tion of his proof shows that it does not have to be so.

The positive weights are very important for the proofs of our results.
One positive quadrature formula of Lobatto type which we shall need is
the following:

LEMMA 2.7.  For each integer k (2 <k <n), there exist a unique system of
n—k+1 weights W\, .., W, .|| and a positive number A, such that for
any polynomial fin P, _ . we have

n—k+1

[ = a0 WA AL A=+ ),

v=1

where —1 <x{ =V < ... <x*71 <1 are the zeros of Q'*~" and
4= 2%t Ik —1/2) T(k—3/2) [(n—k +2)
© k=12 —4n +k) T(n+k—3) ~

The weights W) are all positive.
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Proof. 1t is easily seen that

1
Gn—r+1(X)= W2 Tk—1) 0% M(x)
—Chol =" e (30)

The zeros of Q, are all distinct and lic in [ —1, 1]. So for 2<k <n the
polynomial Q'*~" has n—k+ 1 distinct zeros x*~ ", v=1,.,n—k+1,
which all lie in the open interval (—1, 1).

Consider the interpolatory quadrature formula

1 n—lk+1
| ey e dey ¥ g ") (31)
- v=1
which is exact in £, _,. In view of (30) we have

1
[ (w32 0l 0 px)dx =0, Vped,
1

and so, by a standard argument, formula (31) is exact for all polynomials
in 2, _o._;. From (30) we see that {¢,_ . 1},>0 is a family of quasi-
orthogonal polynomials of order 2 with respect to the weight (1 —x?)*—%2,
Therefore by Lemma 2.6 the weights w'*) in the quadrature formula (31)
are all positive. Let f belong to %, _,, ., and write

J(x)=(1=x?) 5,(x) O "(x) +711(x)

where s,€%,_,_, and r,e?,_,.,. By Lagrange interpolation in the
points

k—1 k—1
=L x5

we have
n—k+1

n(x)=r(=1DLex)+ Y r(x{ ") Ly(x) +7(1) L, 4 a(x)
v=1

where Ly,...L, .., are the fundamental polynomials. Since
Ly, ..L, ., all vanish at the points —1, 1, we can write

J(x)

(1=x?) s5(x) + 7 (—1) Lo(x)+r (1) L, 5, 5(x)
=(1—=x?)55(x)+ f(—1) Lo(x) + f(1) L, 5, »(x) (32)
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where s, €%, _,_,. Hence for f €%, .., we have

jl (1—x2)k= 32 f(x) dx=j1 (1 — %232 5.(x) dx +af(— 1)+ bf(1) (33)

1 1
azf (1 =x*)k =52 L(x) dx, sz (1 =x?) =52 L, . 5(x)dx.
1 1

By the quadrature formula (31) which is exact for all f€ %, _,, _;, we have

1 n—k+1
| =g dv= Y wiRs(xEY)
1

v=1

n—k+1 M”H
v
= 444444:447(1_ xM’l) x% 1”
& T
n—k+1

Y WIRAXETY),

v=1

where

Here we have also used (32). Hence (33) implies that
1 n—k+1
[ =y pxax= Y WD) +af(— 1) +bf(1). (34)
1

- v=1

Next we note that a=»b for the simple reason that the nodes

x{f= L x$ 1) | are symmetrical about the origin. Further,
b= f )= 5/2(1+x) Gn—r+1(X) dx
2q, i 1(1)
1

2 (1)“1 (1) 52 (1)t
n—k+1 -1

x{c,’:_;_l(x) "2kl (x >}dx}.
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Using [2, p. 263, formula 4]

jl (1—x)” (1 +x)* P F(x) dx

2P M p+ D) I(B+m+1) I(a—p +m)
B m! Toa—p) I(f+p+m+2)

we obtain

n—k+1

1
J (1_x)k—5/2(1+x)k—3/2 Ck—] (x)dx
1

n—k+1

1
:J (1—x)F 2 (1 +x) 2 CE ) (x) dx
—1

_ 3 Lk =3/2) Ik —172)
- I(2k—2)

which implies that

2%=3  [(k—3/2) Ik—1)2)

a=b=A =
(1) nl(2k=2)
But
n—2
qn7k+1(1)zcrlf:1i+1(1)_ n Cf:klﬂ(l)
_2(k—1)2n* —4n+k)(n+k—4)!
B n(2k —3)! (n—k+1)!
and so
g 22k —4 Ik—1/2) Ik —=32)I(n—k+2)
(k= 1)(2n* —4n+k) I'n+k—3)

We also have the following positive quadrature formula of Radau type.

LemmA 2.8.  For each integer k (2 <k <n), there exist a unique system of
n—k+1 weights W), .., W, |, and a positive number B, such that for
any polynomial [ in %, _ ;. we have

[ de= Y WA ) + B,
1



WEIGHTED L? INEQUALITIES 271

where —1 <y V< ... <p%" 1 <1 are the zeros of Q'* " and

%3 Ik —1/2) Tk —3/2) [(n—k +2)
(k—1)(2n*>—4n+k) T(n+k—3)

Bk:

The weights W( ) are all positive.

The proof of this lemma requires some slight modifications to that of
Lemma 2.7.

Remark 5. Let us mention that quadrature formulae of the form

jl (1—x?)k =" =32 f(x) dx

n—k+1 m—1

= Y Wokm2 O+ Y (a0 f V(= 1)+ b, f(1)),
v=1 Jj=0
based on the zeros of Q%Y. which are exact for all polynomials in
Poy_oksom—1, can also be constructed. In addition, some useful infor-
mation about the “boundary” weights a;,, b;,, 0<j<m—1, can be
obtained, as was done in [3] and [7] for the so-called “generalized
quadrature formulae.”

We also need the following positive quadrature formula

LeEmmA 2.9. For each integer k (3 <k <n), there exist a unique system of
n—k+1 weights W, ., W, .\ 5 and a positive number C, such that for
any polynomial [ in P,,_ . ., we have

n—k+1

[ Ry de =" Y W) + G- 1+ (),

v=1

where —1 <z "V < ... <z =1 <1 are the zeros of R* Y, and
o 3.0%-6 Ik —5/2) [k —3/2) [(n—k +2)
K (k—1)(2n% — 8n + 3k) In+k—5) :

The weights W”‘3 are all positive.

Proof. Starting with the formula

! ]
hn7k+l(x)':n(n_1)2k741—v(k_2) (o l)(x)
—4)n=3
—ci - ey ()

the result can be obtained in roughly the same way as that for Lemma 2.7.
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Now, we mention the following positive quadrature formulaof the Radau
type:

Lemma 2.10.  For each integer k (3 <k <n), there exist a unique system
of n—k+1 weights W}, .., W\, .| , and a positive number D, such that
for any polynomial f in P, _ .. we have

[t 2 de=" S WA ) + DA,

v=1

where —1 <t~ V< ... <t'* 71 <1 are the zeros of R~ ", and
. 3.0%-5 Tk —5/2) Tk —3/2) [(n—k +2)
KT (k—1)(2n* —8n + 3k) In+k—5) :

The weights W'*} are all positive.

This lemma can be proved in roughly the same way as was Lemma 2.9.
Finally, we recall the following quadrature formula.

LemmA 2.11. If's is a trigonomeric polynomial of degree at most 2n, then
for all real o, we have

| o A
Ej_ns(é)dfzznﬂ 3 S(znvfﬁ"‘)‘ (35)

=0

3. PROOFS OF THE RESULTS

3.1. Proof of Theorem 1.
Let pe#,. By Lemma 2.7 we have

Jl (1 —x2)k—3 {p(k)(x)}z dx
1

n—k+1

= 2 WP+ A=D1 + {p O},

v=1
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because {p*(x)}>€ P, =P, 2.1 Since p satisfies (7) at the zeros of
(1—z* T, ,(z), using Lemmas 2.2 and 2.1 and Theorem C, we obtain

Jl (1 —x2)k—sP2 {p(")(x)}zdx

<Y WO 4 A (0P~ 1)1 4 {0W(1))2)

v=1

[y ()

where we have again used Lemma 2.7.

Remark 6. In the above proof, instead of Lemma 2.7, we could have
used the Radau-type quadrature formula given in Lemma 2.8.

3.2. Proof of Theorem 2

Let p be a polynomial of degree at most n such that (13) holds. By
Lemma 2.1 applied in conjunction with Lemmas 2.3 and 2.9 and the
inequality (14), we obtain

Jl (1 _x2)k77/2 {p(k)(x)}z dx

T WP+ G M= 1))+ (p(1))7)

v=1

Y RO LRI} (R}

v=1

jl (1—x2) 72 {R¥(x)} 2 dx.

N

Remark 7. For the proof of Theorem 2, we could have used, instead of
Lemma 2.9, the positive quadrature formula given in Lemma 2.10.

3.3. Proof of Theorem 3

Let us recall the generalized Gauss—Lobatto quadrature formula [ 25,
p- 386]

n—k+1

i (@,g"(—1)+b,g (1) + Y wogxy pir1o(A+k—1)

v=1
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which is exact for all ge %, _, and wherein the weights w, are all positive.
Besides, a,=(—1)’b,>0 for all j. We apply this formula to the polynomial
g(x) :=(1—x*)*"2{p™(x)} % Since

g(kfz)( i1)=(—{_—1)k72 2’”'72(/(—2)! (p(k)(il))z

we obtain
! 2\t k—5/2 d* 2
L(l—x) e e I
dk 2 k 2
=Cr_a |5 p(=1) +(=DF%d, , - p(+1)
dx dx
n—k+1 dk 2
+ Z w, Wp(xn—k—kl,v(/l-i_k_l))
v=1
k 2 koo 2
S |57 Ci=D| + (=D 2dy 5 |55 Ci(+1)
dx dx
n—k+1 dk . 2
+ Z w, dxk Cr/;(xn—k+l,v()"+k_1))
v=1
! 2\i+k—52 d* 2
:I_l(l—x) T Cilx)| dx

with ¢, ,=2"*k—=20a, ,, d, _,=2"*k—2)!b, ,. Here we have
used the positivity of a; _,, (—1)*"2by_5, Wy, .o W, _1 .1, and Lemmas
24, 2.1, and 2.5.

3.5. Proof of Theorem 4

According to the famous interpolation formula of Riesz [22], if 7 is a
trigonometric polynomial of degree at most n, then for any 6,

2n 1

' _L _1\k+1
(0 =5 2 OV GG

=1

(0+0,), (36)

where

2k —1
2n

0,= 7 (k=1,..,2n).
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Applying (36) to the trigonometric polynomial #(0) :=sin nf and setting
0 =0 we obtain
1 1

4n ,El sin2(0,2) " (37)

Now if is a trigonometric polynomial of degree at most n such that

(7)

<1 for v=0,1,..,2n—1,

then by (36)

Note that

_r@P _ro) 1)
s(e)'_l—cosﬁ_ 1 —cosf

is a trigonometric polynomial of degree at most 2n — 1 such that

n? 2v—1)=n

|S(9)|<m at 0:=0,= o

for v=1,..,2n (39)

Now we apply the quadrature formula

. » o r(y—1
| s(@)d9=”2s<”2n)”>,

-r n y=1
valid for all trigonometric polynomials of degree at most 2n— 1, to obtain

Jﬂ |t/(0)|2 2n I’l2

n
d0<— ) ———=
2 1—cos 0 n El 2sin*(0,/2)

=2nn? 1§ !

dr V; sinz(GV/Z)
=2mn’, (40)

where in the last step we have used (37). This is the same as (15).
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Remark 8. The above argument can be easily extended to show that if
s is a trigonometric polynomial of degree at mostg n, such that

(%)

<1 for v=0,1,..,2n—1

and
s =D0)=0  for some keN,
then
L s (0)]
— do <n* 1.
27J,,Z 1 —cos @ "

2.6. Proof of Corollary 1

Note that if p € 2, then s(0) :=p(cos 0) is a trigonometric polynomial of
degree at most n such that |s(va/n)| <1 for v=0, 1, .., 2n— 1. Besides,
s'(0) =0 since s'(0) = —sin Op’(cos 0). So (15) holds for s. Now

! +x 0)|?
dx = 7d0
Ll x| x)I* 2f 1 —cos @
1 1
<’ =| X T2 d.
V1I—x

We omit the proofs of Theorem 5 and Corollary 2 since they are very
similar to those of Theorem 4 and Corollary 1, respectively.

Remark 9. Instead of Theorem 5 we can just as easily prove that if s is
a trigonometric polynomial of degree at most n, such that

[s(va/n)| <1 for v=0,1,..,2n—1
and

sPD0)=s%*"D(x)=0  for some keN,
then

1 s 1(0)
I R R P
27zf_n 1 —cos?0 "
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3.7. Proof of Theorem 6

In order to estimate |s({)|? at a given point &, + i, with 7, # 0, we may
assume &, =0 since we can consider the trigonometric polynomial s(&, + {)
if necessary. Let us prove that if ¢ is an arbitrary trigonometric polynomial
of degree at most n vanishing at ir,, then

—7

sin(n + 3)(& + i) |?
sin 3(& + i)

sin(n + 3)(& + i)
sin 5(& + i)

2dé>f”

—7

+&(<) dZ  (41)

with equality only if &(¢) =0. We have

f

—T7

sin(n + 3)(& + i)
sin 5(& + i)

+&(&)

d

(" [sin(r+5)(E + ino) |? . )
_Ln sin L(& + i) dé"‘fﬁﬂ le(&)|” dS
7 sin(n + 3)(E +ing) — = sin(n+ 1)(&—ing)
(s et G Wiy UL
Further
7 sin(n + 5)(E+ o) —
| ey O«

1 a 1 &(<)
= <cosh <n +2> 770> an <sm <n +2> f> m dé

. 1 i 1 &(é)
+1 <smh <}’l +2> 770> j_n (COS (l’l +2> f) m dé.  (43)

Now note that ¢({) vanishes at —in, (mod 27) and so &({ + in,) vanishes
at 0 (mod 2n). It follows that if e({ + i) =35 _ _ a,e™ then¥7_ _ a, =0,
ie, w—11is a factor of the polynomial w" 3% _  a,w*. Consequently,

3 . n—1/2
E(C + 17’/0) _ Z bke,'k(g/z)’

. l =
sin 3¢ k= —(n—1/2)

n—1/2
(R S bpe 2wtk
— - ke
sin 5 (L + i) k=—(n—1/2)
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is an entire function of exponential type n—3. Since sin(n+ %) is of
exponential type 7 + 1, the product A4({) := (sin(n + ) )(e({)/sin (L +in,))
is entire and of exponential type 2n. It is also periodic with period 27.
Indeed, sin(n + 3)({+ 2n) = —sin(n+ )¢ and

ol +27) a0
sin (C+27r+z;70) —sin 2({+in,)”

~

So by a well-known result [ 5, Theorem 6.10.1], A4 is a trigonometric poly-
nomial of degree at most 2n. From Lemma 2.11 it follows that

: N,
=] (sn(+3)¢) g =0

Similarly,

n 1 (&) B
[ eos(ne3) e ety =0

and so

= osin(n+)(E+ing) — .
.tn T O =0. (44)

Taking conjugates we get

fﬂ sin(7 + 3)(& — o) (&) dé=0. (43)

—x sin (& in)

Using (44) and (45) in (42) we conclude that (41) holds and therein
equality holds if and only if j | dé=0; but ¢ being continuous,
% . 1e(&)]? d¢ =0 if and only if a(é)

Now let s be an arbitrary trlgonometric polynomial of degree at most
n with s(in,) =4, and consider #({):=(1/4,)(sinh(2n + 1)#n,/sinh 5,) s({).
Since ¢ takes the same value at the pomt in, as the trigonometric polyno-
mial (sin(n + 2)({ +in,))/(sin 3({ +in,)) does, it follows from (41) that

n 1 /sinh(2n+ 1)5\* [~
I dt < (TR [ ey e

[QMn+U@+mw2
sin 3(& + in,)
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It is easily seen that

1 J” sin(n+3)(E+iny)|> . sinh(2n+ 1),
2nd | sin (& +in,) ~ sinhy,
and so
. sinh(2n + 1 L4
sting)?= 2012 < TR D (%2 g
sinh 7, ,,Z

which readly leads us to (19).

Remarks on Theorem 6. (i) Let [|s(S,)| =max, g [s(S)]. Taking (=
&y +in in (19) and letting # tend to zero we obtain

1 o= 12
max ()] = Istéo)l <2041 (5[ IR az)

CeR

(i) Let pe,. Then s({) := p(cos {) is a trigonometric polynomial of
degree at most n. So by (19), we have for # #0,

sinh(2n+1))n 1

| p(cos(& +in))|? Swﬂ f:z | p(cos &)|* dE,

e, for all £eR,

e"+e " e’"—e " |
‘p( cosé—i s1né>

2

2 2

sinh(2n+1)n 1 (! dx
<RI

sinhy =w/_ /1—x2

As & varies, ((e¢”+e")/2) cos & —i((e"—e~")/2) sin & describes the ellipse
with foci at —1,1 and semi-axes ((e!'+e~1")/2), ((e""—e~1")/2). So,
putting R=¢"'>1 and denoting by & the ellipse x?/((R+R")/2))*+
y?/((R—R")/2)?>=1, we conclude that

\/R2)1+1_R(2n+1) 1t , dx 12
< 1 .
ma () ez m>
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Some Additional Remarks. With reference to Lemma 2.7, the question

arises of whether the quadrature formula given therein has ADP >
2n—2k + 1. The answer is no. Indeed, the polynomial

n—2

p(x)=(1—x2) {C’;Ll(x)— CZz;l(x)} Chl (%)

vanishes at the nodes of the quadrature formula, but

[* 52 iy e

—9 1
= T2 e () <0 (n>2)
—1

Therefore ADP =2n—2k+ 1. The ADP of quadrature formulae given in
Lemmas 2.8, 2.9, and 2.10 can be similarly discussed.

The nodes of quadrature formulae given in Lemmas 2.7, 2.8, 2.9, and
2.10 are not available in an explicit form, but they are all zeros of certain
quasi-orthogonal polynomials. These polynomials can be expressed as
characteristic polynomials of a symmetric tridiagonal matrix, as was
explained in detail in [ 30]. Hence, the nodes can be found numerically, by
using an appropriate method for the computation of eigenvalues, as was
done in [11] for classical orthogonal polynomials.

It may be added that we can also prove quadrature formulae of the form

n—k+1

1 .
| 0 g de = Y W )

- v=1

m—1

+ Z (ai,k.m,/lf(j)( _1) + bj,k,m,lf(j)(l))a
i=0

based on the zeros of (d*~"/dx"*~V){(x*—1)(d/dx) C} _,}, and which
are exact for all polynomials in %, _ 5, 2 _1-

In future work we will report on new positive quadrature formulae based
on the zeros of the derivatives of certain quasi-orthogonal polynomials,
which satisfy certain boundary conditions. This type of quadrature for-
mulae are specially interesting, since they can be used to introduce and
justify new collocation methods for the numerical solution of partial
differential equations. We refer the reader to [3] for a review of these
methods.
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